CMOS IC

SANYO

LC7152, 7152M, 7152NM, 7152KM

Universal Dual-PLL Frequency Synthesizers

Overview

The LC7152, 7152M, 7152NM, 7152KM are universal dual-PLL frequency synthesizers for use in weak signal type cordless telephone applications in the USA, South Korea, and Japan, and broadcast satellite (BS) tuners in the USA and Europe.

Features

- Dual charge pump built in for fast channel switching
- Digital lock detector enables PLL lock status check with crystal oscillator precision
- Programmable reference frequency divider supports various applications
- The LC7152NM is a built-in power-on reset circuit version of the LC7152M
- The LC7152KM is an enhanced frequency characteristics version of the LC7152M

Functions

- 2-system PLL built-in (dual PLL)
- 16-bit programmable local-oscillator divider 1.5 to 55 MHz (V_{DD} = 2.0 to 3.3 V), LC7152KM: 55 to 80 MHz (V_{DD} = 2.7 to 3.3 V)
- 14-bit programmable reference-frequency divider 320 Hz to 640 kHz reference frequency using a 10.24 MHz crystal oscillator
- · Digital lock detector
- Dual charge pump
- Amplifier built-in for an active LPF
- Serial transmission data input (CCB format)
- LC7152NM with power-on reset circuit (pins OUTA and OUTB become open at power-on)
- 2.0 to 3.3 V supply voltage
- DIP24S and MFP24S packages

 CCB is a trademark of SANYO ELECTRIC CO., LTD.
 CCB is SANYO's original bus format and all the bus addresses are controlled by SANYO.

Package Dimensions

unit : mm

3067-DIP24S

unit : mm

3112-MFP24S

- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

SANYO Electric Co.,Ltd. Semiconductor Company TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

Specifications

Absolute Maximum Ratings at Ta = 25° C, V_{SS} = 0 V

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{DD} max	V _{DD}	-0.3 to +7.0	V
Movimum input voltogo	V _{IN} max(1)	CE, CL, DI, AIA, AIB	-0.3 to +7.0	V
	V _{IN} max(2)	XIN, PIA, PIB, TEST	–0.3 to V _{DD} +0.3	V
	V _O max(1)	LDI, LDB	-0.3 to +7.0	V
Maximum output voltage	V _O max(2)	AOA, AOB, OUTA, OUTB	-0.3 to +15	V
	V _O max(3)	PDA1, PDA2, PDB1, PDB2, XOUT	–0.3 to V _{DD} +0.3	V
Movimum output ourropt	I _O max(1)	LDA, LDB, OUTA, OUTB	0 to 3	mA
	I _O max(2)	AOA, AOB	0 to 6	mA
		Ta≦85°C, LC7152	350	mW
Allowable power dissipation	Pd max	Ta≦85°C, LC7152M, 7152NM, 7152KM	160	mW
Operating temperature	Topr		-40 to +85	°C
Storage temperature	Tstg		-55 to +125	°C

Allowable Operating Ranges at Ta = –40 to +85°C, V_{SS} = 0 V

Deremeter	Symbol	Conditiono		Ratings		Linit
Farameter	Symbol	Conditions	min	typ	max	
	V _{DD} (1)	V _{DD}	2.0		3.3	V
Supply voltage	V _{DD} (2)	V _{DD} :Serial data retention voltage, see Figure1, *1	1.5			V
	V _{DD} (3)	V_{DD} :Power-on reset voltage, $t_R \ge 20 \text{ ms}$, see Figure1, *1			0.05	V
Input high lovel veltage	V _{IH} (1)	CE, CL, DI: V_{DD} = 2.0 V	1.5		5.5	V
	V _{IH} (2)	CE, CL, DI: V_{DD} = 3.3 V	1.7		5.5	V
Input low lovel veltage	V _{IL} (1)	CE, CL, DI: V_{DD} = 2.0 V	0		0.4	V
Input low-level voltage	V _{IL} (2)	CE,CL,DI:V _{DD} = 3.3 V	0		0.6	V
Output voltage	V _O (1)	LDA, LDB	0		5.5	V
	V _O (2)	AOA, AOB, OUTA, OUTB	0		13	V
	f _{IN} (1)	XIN:Sine wave, capacitively coupled	1.0		13	MHz
Input frequency	f _{IN} (2)	PIA, PIB: Sine wave, capacitively coupled *2	1.5		55	MHz
	f _{IN} (3)	PIA, PIB: Sine wave, capacitively coupled *3	55		80	MHz
	V _{IN} (1)	XIN: Sine wave, capacitively coupled	200		600	mVrms
	V _{IN} (2)	PIA, PIB: Sine wave, capacitively coupled *2,3	100		600	mVrms
Crystal oscillator frequency	f _{X'tal}	XIN, XOUT: CI \leq 50 Ω CL \leq 16 pF *4	4	10.24	11	MHz

Note *1 LC7152NM

		FA/FB (serial data inpu	t frequency select bits)	\/	Devrice
		[0]	[1]	∨ DD	Device
*2	f _{IN} (2)	1.5 to 23 MHz	20 to 55 MHz	2.0 to 3.3 V	LC7152, 7152M, LC7152NM, 7152KM
*3	f _{IN} (3)		55 to 80 MHz	2.7 to 3.3 V	LC7152KM

*4 Cl is the crystal impedance and CL is the load capacitance.

Deremeter	Cumbal	Conditions	Ra	tings		Linit
Falanleter	Symbol	Conditions	min	typ	max	Unit
Output high lovel veltage	V _{OH} (1)	PDA1, PDB1: I _O = 1 mA	V _{DD} - 1.0			V
	V _{OH} (2)	PDA2, PDB2: I _O = 2 mA	V _{DD} - 1.0			V
	V _{OL} (1)	PDA1, PDB1: I _O 1 mA			1.0	V
	V _{OL} (2)	PDA2, PDB2: I _O = 2 mA			1.0	V
	V _{OL} (3)	OUTA, OUTB: I _O = 1 mA			1.0	V
Output low-level voltage	V _{OL} (4)	$\overline{\text{LDA}}, \overline{\text{LDB}}: I_{O} = 2 \text{ mA}$			1.0	V
	V _{OL} (5)	AOA, AOB: $I_0 = 0.5$ mA, AIA = AIB = 1.2 V			0.5	V
	V _{OL} (6)	AOA, AOB: $I_0 = 1 \text{ mA}$, AIA = AIB = 1.3 V			0.5	V
	I _{OFF} (1)	$\overline{\text{LDA}}$. $\overline{\text{LDB}}$: V _O = 5.5 V			5.0	μA
Output off-leakage current	I _{OFF} (2)	PDA1, PDB1, PDA2, PDB2: V _O = 0/3.3 V		0.01	10.0	nA
	I _{OFF} (3)	AOA, AOB, \overline{OUTA} , \overline{OUTB} : V _O = 13 V			5.0	μA
	I _{IH} (1)	CE, CL, DI: V _I = 5.5 V			5.0	μA
	I _{IH} (2)	XIN: V _I = 3.3 V, V _{DD} = 3.3 V	2.0		6.5	μA
Input high-level current	I _{IH} (3)	PIA, PIB: V _I = 3.3 V, V _{DD} = 3.3 V	3.5		10.0	μA
	I _{IH} (4)	AIA, AIB: V _I = 3.3 V		0.01	10.0	nA
	I _{IH} (5)	TEST: V _I = 3.3 V, V _{DD} = 3.3 V		120		μA
	I _{IL} (1)	CE, CL, DI: $V_I = 0 V$			5.0	μA
	I _{IL} (2)	XIN: V _I = 0 V, V _{DD} = 3.3 V	2.0		6.5	μA
Input low-level current	I _{IL} (3)	PIA, PIB: V _I = 0 V, V _{DD} = 3.3 V	3.5		10.0	μA
	I _{IL} (4)	AIA, AIB: $V_I = 0 V$		0.01	10.0	nA
	I _{IL} (5)	TEST: V _I = 0 V, V _{DD} = 3.3 V			5.0	μA
Internal foodback registered	R _f (1)	XIN: V _{DD} = 3.3 V		1.0		MΩ
	R _f (2)	PIA, PIB:V _{DD} = 3.3 V		600		kΩ
Internal pull-down resistance	Rd	TEST: V _{DD} = 3.3 V		30		kΩ
Input capacitance	C _{IN}	XIN, PIA, PIB		2.5		pF
Supply ourrant*1	I _{DD} (1)	V _{DD} (= 2.0 V):f _{IN} = 55 MHz		3.0	8.0	mA
	I _{DD} (2)	V _{DD} (= 3.3 V):f _{IN} = 55 MHz		7.0	14.0	mA
Supply aurrent*2	I _{DD} (4)	V _{DD} (= 2.0 V):f _{IN} = 55 MHz		1.5	4.5	mA
	I _{DD} (5)	V _{DD} (= 3.3 V):f _{IN} = 55 MHz		3.9	8.0	mA

Electrical Characteristics in the allowable operating ranges

Note *1. Dual PLL operation (both PLL-A and PLL-B), SB= 0, XIN= 10.24 MHz (crystal), PIA and PIB input = 100mVrms at f_{IN}, all other inputs at V_{SS}, all other outputs open.

*2. Standby mode: Single PLL operation (PLL-A operating and PLL-B stopped), SB = 1, XIN = 10.24 MHz (crystal), PIA input = 100mVrms at f_{IN} , all other inputs at V_{SS} , all other outputs open.

Pin Assignment

Equivalent Block Diagram

Pin Functions

Symbol	Pin No.		Function	Symbol	Pin No.	Function
PIB	16	Side-B oscill	ator signal input	PDB2	23	Sub charge pump
XIN	1	Cruatel equil	otor	PDB1	22	Main charge pump
XOUT	24		alui	AIB	21	Low poor filter transistore
PIA	14	Side-A oscill	ator signal output	AOB	20	- Low-pass litter transistors
V _{DD}	17	Power suppl	у	OUTB	19	General-purpose output port
V _{SS}	15	Ground		LDA	6	Side-A unlock detection
CE	2	Carial data	Chip enable	PDA2	9	Sub charge pump
CL	3	Serial data	Clock	PDA1	10	Main charge pump
DI	4	liiput	Data	AIA	11	Low poor filter transistore
TEST	8	IC Test		AOA	12	
NC	7, 18	No connection	ons	OUTA	13	General-purpose output port
LDB	5	Side-B unloc	k detection			

Pin Description

Symbol	Pin No.	Function		Descrip	tion of function	
PIA	14	Side-A local oscillator signal	 Side-A programm 	hable divider. The	input frequency	ranges are as follows.
		input	FA = [0]	FA = [1]	V _{DD}	Device
			1.5 to 23 MHz	20 to 55 MHz	2.0 to 3.3 V	LC7152, 7152M LC7152NM, 7152KM
				55 to 80 MHz	2.7 to 3.3 V	LC7152KM
			FA: Serial data	1		
			Bits DA0 to DA1: Divider ratio N	5 determine the d = 272 to 65535	livider ratios	
PIB	16	Side-B local-oscillator signal	 Side-B programm 	nable divider		
		input	The input freque	ncy ranges are th	e same as for Pl	IA.
			$FB(\rightarrow FA)$: Det	ermined by the s	erial data	
			Divider ratio N	- 272 to 65535	ivider ratios	
			Serial data: Bit S	B is the standby	mode control bit	
			When SB = 1,	standby mode is	selected. In stan	idby mode, side-B is
			stopped, PIB is	s pulled down to	V _{SS} .	
XIN	1	Crystal oscillator	Crystal oscillator	connections (CL	$\leq 50 \ \Omega \ Cl \leq 16$	SoF)
XOUT	24		Note) When usin	g a crystal other	than as indicated	l above, its compatibility
			with the cr	ystal oscillator mu	ist be thoroughly	studied.
PDA1	10	Side-A main charge pump	These are PLL c	harge pump outp	uts that output th	e PLL phase error
			signals. When th	e frequency gene	rated by dividing	the local oscillator signal
			outputs a high-le	vel signal for the	phase error: whe	en lower, the charge pump
			outputs a low-lev	el signal for the p	hase error.	
			If the two values	match, these pin	s go to high-impe	edance.
PDB1	22	Side-B main charge pump	 fosc/N > fref o 	r leading		
			 fosc/N < fref o 	r lagging		
			$\rightarrow N$	egative Pulse		
			 fosc/N = fref a 	nd coincidence		
			\rightarrow H (*SB – [1] · PDB1	gh-Impedance → High-Impedanc		
PDA2	9	Side-A sub charge pump	PLL charge pum	o output: outputs	PLL phase error	signal only when the
		grant in the strengt party	unlock condition	is detected.		
			The unlock detect	tion threshold is	set by serial data	a bits UL0 and UL1.
PDB2	23	Side-B sub charge pump	• When a phase e	rror that is shorte	r than the detection	ion threshold occurs, this
			charge pump is o	output.	u the phase eno	i signal for the main
			 The output pulse 	of the phase erro	or signal has the	same polarity as the main
			charge pump.			
LDA	6	Side-A unlock detector output	Outputs the PLL	lock/unlock statu	S.	
			LUCKE	ed: Open		
			The unlock detection	tion threshold for	lock/unlock disc	rimination is set by serial
	_		data bits UL0 an	d UL1.		
LDB	5	Side-B unlock detector output	The output phase The output phase	e error extension	is set by serial d	ata bits UE0 and UE1.
			• SB = 1 $\overline{1}$ $\overline{DB} \rightarrow 0$	To the description	i oi the senai dai	la.
AIA	11	Side-A low-pass filter transistor	MOS N-channel	transistor for the	PLL filter	
AOA	12					
AIB	21	Side-B low-pass filter transistor	• The AOA and AC	B output withstar	nd voltage is 13V	<i>'</i> .
	20	Side-A general purpose	These latch the c	arial data hite O	A and OR that ar	e sent from the controllor
		output port	and then invert a	nd output the dat	and OD that all a.	
OUTB	19	Side-B general purpose	(OUTA can also	output XIN divide	d by two.	
		output port	 In the LC7152NM 	$I, \overline{OUTA} \text{ and } \overline{OU}$	TB are open at th	ne power-on reset.

For more information on crystal oscillator : Nihon Dempa Kogyo Co., Ltd.

Continued on next page.

Continued from preceding page.

Symbol	Pin No.	Function	Description of function
CE *1	2	Chip enable input	• Set this pin high when inputting serial data to the LC7152.
CL *1	3	Clock input	• Clock for data synchronization when inputting serial data to the LC7152.
DI *1	4	Data input	• Input for serial data being sent from the controller to the LC7152.
V _{DD}	17	Power supply	LC7152 power supply pin.
V _{SS}	15	Ground	
TEST	8	IC Test input	 LC7152 test pin. (Normally V_{SS} or open.) However, divide-by-two XIN frequency is output from the pin OUTA by applying the V_{DD} level voltage after serial data transfer (T0 = T1 = T2 = 0). Crystal oscillation frequency can be checked normally when the pin is left open.

*1 The input "H" voltage and the input "L" voltage on the CE, CL, and DI pins are $V_{IH} = 1.5$ to 5.5V and $V_{IL} = 0$ to 0.4V when $V_{DD} = 2.0$ V. When $V_{DD} = 3.3$ V, then $V_{IH} = 1.7$ to 5.5V and $V_{IL} = 0$ to 0.6V. (Voltage greater than V_{DD} may be applied to V_{IH} .)

Serial Input Data (PLL Control data) format

Mode1: Latch-1 data (programmable divider data)

A00252

Symbol	Parameter	10.24 MHz crystal	Other crystal frequencies
t _{SU}	Data setup time	At least 0.40 µs	At least 4/f _{X'tal}
t _{HD}	Data hold time	At least 0.40 µs	At least 4/f _{X'tal}
t _{EL}	Enable low-level pulse width	At least 0.40µs	At least 4/f _{X'tal}
t _{ES}	Enable setup time	At least 0.40 µs	At least 4/f _{X'tal}
t _{EH}	Enable hold time	At least 0.40 µs	At least 4/f _{X'tal}
t _{CL}	Clock low-level pulse width	At least 0.40 µs	At least 4/f _{X'tal}
tСН	Clock high-level pulse width	At least 0.40 µs	At least 4/f _{X'tal}
t _{LA}	Latch propagation delay	Up to 0.40 µs	Up to 4/f _{X'tal}

Note Perform data transfer after the crystal oscillations normalize. Data transferred before normal oscillations will not be recognized.

Description of Serial Data

No	Controller/Data				De	scription	1			Related Data
(1)	Side-A	• This c	aisa							
(.)	programmable	binary	valu							
	divider data: DA0	The r	ange		R0 to R13					
	to DA15	N	IA = f	VCO-A/fref				-,		
(2)	Side-B	 This d 	data s	ets the side-B	programm	nable di	vider numbe	er. This data	a is a	
	programmable	binary	valu	e in which DB	0 is the LS	SB.				R0 to R13
	divider data: DB0	The r	ange	of divider valu	es that ca	in be set	t is 272 to 6	5,535.		
	to DB15	N	IB = f	VCO-B/fref						
(3)	Reference	• This c	lata s	ets the referer	nce divide	r numbe	er. This data	is a binary	value in	
	frequency data: R0	which	R0 is	s the LSB.			. :. 0 to 10 0	000		
	to R13	I ne ra	ange	of divider valu	es that ca	n be sei	115 8 to 16,3	383.		
		((ACII efere	nce frequency	(5) (5) (5) (5) (5) (5) (5) (5)	VILLI' XIN	.∠ J)/(actual div	/ider numh	er)	
(4)	Output port data:	• This (lata d	etermines the	output on	the der	neral-nurnos		ort	
	OA, OB	C								
	- , -	C								
		 Data 								
		• During								
(5)	Input frequency	• This c								
	range switching	(FA –	→ PIA,	$FB\toPIB)$						
	data: FA, FB		Г		Supply	voltage	(Vחם)			
				Data —	2.0	to 33	/			DA0 to DA15
				[0]	1.5 t	to 23 MH	- 			DB0 to DB15
		 In the 	case							
(6)	Standby mode data	• This c	lata p							
	: SB	• 9	6B = 1							
			\rightarrow							
		• 9	B = 0	: standby mod	de off		and a second second			
		• Durin	\rightarrow	Dual PLL oper	ration: Sid		rating, side-	B operating]	
(7)	Linlack dataction	• This i		power-on rese		rochold	data that is	used for P	11	
(')	data	lock/u	nlock	discrimination	. If the th	reshold	shown in the	e table is e	ceeded.	
		the ur	nlocke	ed state is dete	ected.					
									unit : un	
	: UL0, UL1			Dhago orror			~ · · · · · · · ·		ιιιι . μ ο	
	, -	111.0	1111	detector		XIN :	fXIN [MHz]	example		
			021	threshold	4.0	7.2	8.0	10.24	12.8	
		0	0	0	←	←		\leftarrow	←	
		1	0	±4/f _{X'tal}	±1.00	±0.55	±0.50	±0.39	±0.31	
		0	1	±16/f _{X'tal}	±4.00	±2.22	±2.00	±1.56	±1.20	
		1	1	±64/f _{X'tal}	±16.00	±8.88	±8.00	±6.25	±5.00	
								11		
		(Note) Note	e that if the da	ta change	s in lock	k state, the I	PLL will be	unlocked	
			tem	oorarily.	5					
	: UE0, UE1	• The d	letecte	ed phase error	· (øE) sigr	nal can b	be extended	by a certa	in amount	
		of tim	e and	output on the	LDA and	LDB pir	ns. This data	a determine	es the	
		length	of th	is extension. I	However,	when Ul	$_{0} = UL1 = 0$	0, the phas	e error is	
		not ex	ktende	ea, and is outp	out directly	/.		unit · m		
						D-(, _	
				fref	-y -	kH7		12 5 kHz	-	
		0	0	Δ × (1/fr/	ef)	4.0*	0.8	0.32	-	
				8 × (1/fr	ef)	8.0	1.6	0.62	-	
			1	32 × (1/fr	ref)	32.0	6.4*	2.56	-	
			<u> </u>			04.0	12.0	0.12		
							(*stan	dard value)	

Continued on next page.

No.	Controller/Data			Description	Related Data
(8)	Dead zone control data: DZ	• This data contro (DZA < DZB)	ols the phase c	omparator dead zone.	
		DZ	Mode]	
		0	DZA		
		1	DZB		
(9)	IC test data: T0, T1, T2	This is the IC te concerned about Assume the Normally, the te	est mode switch ut this data. at T0 = T1 = T2 est pins must be	hing data. The user does not need to be 2 = 0. the either at V _{SS} or left open.	

Continued from preceding page.

Power-on Reset supply voltage

- Power-on reset is performed when the supply voltage V_{DD} exceeds 2.0 V by power application after the V_{DD} has once fallen under 0.05 V and kept the level for at least 20ms. • Latch data is retained when the V_{DD} is 1.5 V, where power-on reset is not performed.

Sample Application Circuit (FCC: 10 ch 46/49 MHz cordless telephone)

Example: FCC 1-channel 46/49 MHz cordless telephone base station (See diagram in the preceding page.) for fref: 5 kHz, RX VCO: 38.975 MHz, TX VCO: 46.610 MHz

Programmable Divider Data

(1) NA = $\frac{\text{fVCO} - \text{A}}{\text{fref}} = \frac{\text{RX VCO}}{\text{fref}} = \frac{38.975\text{MHz}}{5\text{kHz}} = 7795 \text{ (DA0 to DA15)}$ (1E73)Hex

- (2) NB = $\frac{\text{fVCO} \text{B}}{\text{fref}} = \frac{\text{TX VCO}}{\text{fref}} = \frac{46.610\text{MHz}}{5\text{kHz}} = 9322 \text{ (DB0 to DB15)}$ (246A)Hex
- (3) Reference frequency data

$$NR = \left(\frac{fX' tal}{fref}\right) \div 2 = \frac{10.24MHz}{5kHz} \div 2 = 1024 (R0 to R13)$$
(400)Hex

- (4) Output port data General-purpose output port: Open (OA = 0, OB = 0)
- (5) Input frequency range select bits FA = FB = 1
- (6) Standby mode
- During standby (SB = 1)(7) Unlock detector output

Extends the phase error signal by 6.4ms if a phase error of $\pm 6.25 \ \mu s$ or more is generated. : UI (

$$UL0 = UL1 = 1$$

- : UE0 = 0, UE1 = 1(8) Dead-zone control data
 - DZA mode : DZ = 0
- (9) LSI test data: T0 = T1 = T2 = 0

(1) Mode 1: Latch-1 data

D A 0	D A 1	5 ¥ D	D A 3	D A 4	D A 5	D A 6	D A 7	D A 8	D A 9	D A 10	D A 11	D A 12	D A 13	D A 14	D A 15	D В О	D 8	D 8 2	D 8 3	D 8 4	D 8 5	D 8 6	0 8 7	D 8	D 8 9	D B 10	D B 11	D 8 12	D 8 13	D 8 14	D 8 15
1	1	0	0	1	1	1	0	0	1	1	1	1 	0	0	0	0	1	0	1	0	1	1	0	0	0	1	0	0	1	0	0

(2) Mode 2: Latch-2 data

P	A	R	R	R	A	A	A	A	R	A	R	я	A			o	0	F	F				s	υ	υ	υ	U	۵	т	т	т
															*					۰				L	L	Ε	Е				
0	1	5	Э	4	5	6	7	8	9	10	11	12	13			•	8	A	8				8	0	1	0	1	z	0	1	2
		ليع													-																
¦ o	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	1	0	0	0	0	1	1	0	1	0	0	0	0
l T			1					1				1			1	l i			1				1				1				

: data = 0

A00256

Dual Charge Pump Descriptions

If an unlock state is detected at channel switch, the sub-charge pump operates, R1M/R1S becomes R1, low-pass filter's time constant is reduced, and the lockup accelerates.

When the circuit is locked, side-band characteristics and modulation characteristics are improved by making the sub-charge pump off, i.e., floating, R1M to be R1, and increasing low-pass filter's time constant.

Device Comparison

Device	Operating frequency			D	
	FA/FB = 0	FA/FB = 1		Power-on reset	Package
	1.5 to 23 MHz	20 to 55 MHz	55 to 80 MHz		
LC7152	Yes	Yes	No	No	DIP24S
LC7152M	Yes	Yes	No	No	MFP24S
LC7152NM	Yes	Yes	No	Yes	MFP24S
LC7152KM	Yes	Yes	Yes (V _{DD} = 2.7 to 3.3 V)	No	MFP24S

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only ; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of June, 1999. Specifications and information herein are subject to change without notice.